

U.S. Demil, LLC

Patented "Decineration™" Thermal Process

Science of Decineration™ Technology

- · In Chemistry this is called "Decomposition"
- The industrial embodiment of the Decineration™ process is the use of an externally heated, rotating horizontal tube which essentially duplicates the laboratory model known as "a horizontal flat plate in atmosphere".

Decineration™ is a *non–incinerative*, thermal process as determined by the **US EPA Headquarters Solid Waste Division** and the **Indiana Department** of **Environmental Management**.

Complex, long chain, solid energetics (nitrocellulose, nitramines and nitrate esters) are *decomposed* into short chain, light hydrocarbon gases by fracturing the carbon-carbon, carbon-nitrogen, nitrogen-oxygen and nitrogen-nitrogen bonds.

The process occurs at ambient pressure and moderate temperature of approximately (400° - 700° F) in an externally heated rotary tube *without* contact between heating source and munitions components.

•	The science of the decomposition of energetic compounds has been studied by the Military Services and Research Universities for decades; e.g., G.T. Long, Department of Chemistry, University of Utah (Thermal Analysis of High Explosives: Liquid State Decomposition of RDX) and LT K.K. Miles, Naval Postgraduate School (The Thermal Decomposition of RDX).
•	The process is fully mature and has been known to industry (i.e. petrochemical) for more than a century.

Advantages

Decineration™:

- · Has precise temperature and time (dwell) control
- · Does not form lead oxide in the off gas
- · Does not burn heavy metals such as cadmium or chrome
- · Does not melt non-ferrous metals such as aluminum
- Processes the broadest spectrum of munitions of any current technology; the very definition of OMNIVEROUS!!!
- Proven to Meet the MACT Standards of US EPA for NEW SOURCES

Decineration™ gases are removed for treatment in an Emissions Abatement System (EAS), leaving behind *fully demilitarized munitions* in a "Material Determined As Safe" (MDAS) condition.

The resulting metal has been determined by QASAS certified personnel, through chemical testing, to be **100% demilitarized**.

Unlike other technologies which can destroy the metal alloy, Decineration $^{\text{TM}}$ leaves metal components ready for immediate recycling and/or possible reuse.

Low Decineration $\ ^{\text{\tiny TM}}$ temperatures avoid the formation toxic compounds such as dioxin.

Incineration is a Legal Term defined within US EPA Regulations

The Layman's Test: is there a **direct path** from the *heat source* to the *material* being treated?

- IF Yes It is incineration
- IF № It is **NOT** incineration

WHY IS THIS IMPORTANT?

IT'S ABOUT GETTING THE **PERMIT!!!**

The USEPA and the State Regulatory agencies have not granted a permit for a new explosive waste incinerator on a US Army facility in more than 20 years.

USEPA and Indiana Environmental Management BOTH agree that DECINERATION™ is **NOT** Incineration

US EPA RCRA Letter

Security L. L. Mare State, Director Of State, Princeton Of State, Physics of State o

Sample DODIC's processed through Decineration™ Unit at TEAD

 ${\bf Processed~1390\text{-}N285~Mechanical~Timed~Fuze,~cut~to~validate~explosive~free}$

1377-MF29 Impulse Cartridge Before and After Processing

M934 Ignition Element Packaging

1390-N525 Percussion Primer Before and After Processing

1376-ML68 Detonator Before Processing

1330-G850 Charge Before Processing

1375-M131 Blasting Cap After Processing

CTG. CAL .22

